Added inositol regulates invertase secretion and glucose-repressed SUC2 gene expression in Saccharomyces sp. W4.
نویسندگان
چکیده
The effect of inositol supplementation on glucose derepression, invertase secretion and SUC2 gene expression in Saccharomyces sp. W4 was studied. Invertase secretion was repressed, when the yeast cells, grown the synthetic medium without inositol (I(-) medium) contained more than 0.2% (w/v) initial concentration of glucose. However, in the same medium plus inositol (I(+) medium, inositol conc. 100 microg/100 ml), invertase secretion was repressed only at glucose concentrations higher than 2.0% (w/v). Results showed that secreted invertase activity increased only in the I+ medium, whereas intracellular invertase activity remained constant in both media during the cell, growth. The mRNA encoding secreted invertase was higher in the glucose-derepressed cells grown in the I(+) medium than in the glucose-repressed cells grown in the I(-) medium. Similarly, phosphatidylinositol (PI) content was significantly higher in the cells grown in the I(+) medium than in the I(-) medium. These results indicated that PI might be involved in the glucose derepression, invertase secretion and SUC2 gene expression at the transcriptional level in the yeast.
منابع مشابه
Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase.
The SUC2 gene of yeast (Saccharomyces) encodes two forms of invertase: a secreted, glycosylated form, the synthesis of which is regulated by glucose repression, and an intracellular, nonglycosylated enzyme that is produced constitutively. The SUC2 gene has been cloned and shown to encode two RNAs (1.8 and 1.9 kb) that differ at their 5' ends. The stable level of the larger RNA is regulated by g...
متن کاملMutants of yeast defective in sucrose utilization.
Utilization of sucrose as a source of carbon and energy in yeast (Saccharomyces) is controlled by the classical SUC genes, which confer the ability to produce the sucrose-degrading enzyme invertase (Mortimer and Hawthorne 1969). Mutants of S. cerevisiae strain S288C (SUC2+) unable to grow anaerobically on sucrose, but still able to use glucose, were isolated. Two major complementation groups we...
متن کاملGts1p stabilizes oscillations in energy metabolism by activating the transcription of TPS1 encoding trehalose-6-phosphate synthase 1 in the yeast Saccharomyces cerevisiae.
We reported previously that Gts1p regulates oscillations of heat resistance in concert with those of energy metabolism in continuous cultures of the yeast Saccharomyces cerevisiae by inducing fluctuations in the levels of trehalose, but not in those of Hsp104 (heat shock protein 104). Further, the expression of TPS1, encoding trehalose-6-phosphate synthase 1, and HSP104 was activated by Gts1p i...
متن کاملMutations Restore Invertase Lethality in Yeast Derepression and Cause Temperature-sensitive
Mutations in the SNF2 gene of Saccharomyces cerevisiae prevent derepression of the SUC2 (invertase) gene, and other glucose-repressible genes, in response to glucose deprivation. We have isolated 25 partial phenotypic revertants of a s n . mutant that are able to derepress secreted invertase. These revertants all carried suppressor mutations at a single locus, designated SSN20 (suppressor of sn...
متن کاملTranscriptional responses to glucose at different glycolytic rates in Saccharomyces cerevisiae.
The addition of glucose to Saccharomyces cerevisiae cells causes reprogramming of gene expression. Glucose is sensed by membrane receptors as well as (so far elusive) intracellular sensing mechanisms. The availability of four yeast strains that display different hexose uptake capacities allowed us to study glucose-induced effects at different glycolytic rates. Rapid glucose responses were obser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Indian journal of biochemistry & biophysics
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2007